门徒注册PRDUCTS DISPLAY

联系我们

联系人:张生

咨询热线:400-123-4657

传真:+86-123-4567

手机:13800000000

邮箱:admin@youweb.com

地址:广东省广州市天河区88号

在线咨询

行业资讯

您现在的位置是: 首页 > 门徒动态 > 行业资讯

finetune BERT时优化器的选择

冻结参数经常在一些大模型的训练中使用,主要是对于一些参数较多的模型,冻结部分参数在不太影响结果精度的情况下,可以减少参数的迭代计算,加快训练速度。但bert可调参数很多,一些技巧也很多,比如加上weight-decay, layer初始化、冻结参数、只优化部分层参数等等,方法太多了,每次都会纠结该怎么样去finetune,才能让bert训练的又快又好呢,有没有可能形成一个又快又好又准的大体方向的准则呢。不同的策略下,收敛速度还是有相差比较大的,其中有进行一些frozen参数的,迭代计算确实速度快了许多。

在线客服

关注我们 在线咨询 投诉建议 返回顶部

平台注册入口